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THEORETICAL INVESTIGATION OF ULTRASONIC ATTENUATION FOR 

FREE ELECTRONS IN THE PRESENCE OF A MAGNETIC FIELD" 

by Lawrence Flax 

Lewis Research Center 

SUMMARY 

The ultrasonic attenuation theory developed by Cohen, Harrison, and Harrison is re- 
evaluated to include all qt  values, where g is the phonon wave number and t the elec- 
tron mean free path. This theory predicts a shift in the extrema as a function of magnetic 
field, which has recently been observed experimentally. The theory also describes cor- 
rectly the limiting cases of magnetic field intensity approaching zero and infinity. Tables 
and graphs are presented for the relative attenuation of transverse and longitudinal waves 
in the presence of a magnetic field for various qt values. 

I NTRO DUCT ION 

Ultrasonic attenuation in a solid is primarily due to power loss from the ultrasonic 
wave to  the conduction electrons. The theory of ultrasonic attenuation in the absence of 
a magnetic field using the free  electron model has been developed by Pippard (ref. 1). 
The free electron model in the presence of a magnetic field has been investigated by 
Kjeldaas and Holstein (ref. 2), and independently by Cohen, Harrison, and Harrison 
(ref. 3). Theoretical treatments of real metals have been given by Pippard (ref. 4), 
Kanner (ref. 5), Akhiezer (ref. 6), and Blount (ref. 7) for the case of zero magnetic 
field, and by Pippard (ref. 4) and Gurevich (ref. 8) for nonzero magnetic field. 

These theories have demonstrated that the attenuation of ultrasonic waves propagat- 
ing through a metal depends greatly on the product of the wavelength q and the electron 
mean f ree  path Q. In the short mean free path region where qt  << 1, the attenuation 
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varies as the frequency squared. When the mean free path is long (qQ >> l), the obserbed 
electronic attenuation is dependent on the first power of the frequency. 

propagation, the electrons begin to move in spiralling orbits. If the orbit diameter of the 
electron is of the same magnitude as the ultrasonic wavelength, various resonance situa- 
tions occur. The resultant resonance situations represent the phenomenon of magneto- 
acoustic oscillation, in which the attenuation shows an oscillatory dependence on magnetic 

1 field and is periodic in H- . 
The Cohen, Harrison, and Harrison theory, as well as the Kjeldaas and Holstein 

theory, on magnetoacoustic oscillation shows good quantitative agreement with a variety 
of experimental measurements on metals which can be represented by a free electron 
model. However, if the Cohen, Harrison, and Harrison theory for the case of a longitu- 
dinal wave moving perpendicular to the magnetic field were used in plotting the attenuation 
coefficient as a function of qR, where R is the orbital radius of the electron, there 
would be no shifts in the extrema for various qQ values greater than 1. In contrast, the 
data of Kjeldaas and Holstein show that shifts in the minima seem to be present. 

coefficient should approach the equations obtained by Pippard (ref. 1) in his theory on 
ultrasonic attenuation for zero magnetic field. The Cohen, Harrison, and Harrison theory 
in its present form does not readily yield the zero field limit, whereas the equations in 
the Kjeldaas and Holstein theory can be used to obtain this limit. Another distinct differ- 
ence between the two theories is the requirements on the qQ values. In the Cohen, 
Harrison, and Harrison theory, the qQ range is restricted to values much greater than 1. 
In the Kjeldaas and Holstein case, theoretical results for intermediate values of qQ were 
given. 

shift in the extrema for the longitudinal case does occur in agreement with the Kjeldaas 
and Xolstein theory. 

This paper will show that the Cohen, Harrison, and Harrison theory predicts the 
shift in extrema and also provides an adequate description of the physical situation. The 
theory further describes correctly the limiting cases of H - 0 and H - 00. The resulting 
expressions for the attenuation coefficient can be used for any qQ value. Attenuation for  
the high frequency region is also presented in this report. 

When a magnetic field is applied parallel to or transversely to the direction of wave 

In the limiting case of negligible magnetic field, the expressions for the attenuation 

Recent experiments by Trivisonno and Said (ref. 9) on potassium have shown that the 

GENERAL DISCUSSION 

Propagation of a sound wave in 
their position of stable equilibrium. 

a metal causes the positive ions to oscillate around 
Since the metal contains a free electron gas in addi- 
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tion to the ions, the electrons will be forced to follow the ions in their motion in order to 
screen out any local charge imbalance and keep the metal electrically neutral. However, 
if a phase difference develops between the ions and the electrons, an electric current is 
generated. These electric currents induce electromagnetic fields which are able to trans- 
fer energy to the conduction electron. As a result of collisions, energy is transferred 
back to the lattice or thermal phonons. Thus, there is an irreversible flow of energy 
from the acoustic phonons to the thermal phonons. 

The attenuation can be regarded as the reduction in amplitude of the wave per unit 
distance or, rather, the decrease in the number of acoustic phonons per unit distance as 
the acoustic wave progresses through the metal. The attenuation coefficient a! is defined 
as (ref. 1) 

2 where p is the density of the metal, (1/2)(pU ) is the energy density of the acoustic 
wave, Vs is the velocity of sound, and Q is the power per unit volume absorbed by the 
electrons. (Symbols are defined in appendix A. ) 

The attenuation of the sound wave by a metal depends greatly on the mean free path 
of the electrons. At room temperature the attenuation is negligible because the mean free 
path of the electrons is so short that collisions are very frequent. Hence, the energy 
transferred from the sound wave to the electrons is passed back nearly in phase. How- 
ever, at low temperatures, the mean f ree  path of the electrons is so long that energy 
transferred between the sound wave and the electrons is passed back to the wave with con- 
siderable phase shift. Thus, ultrasonic attenuation in a metal is a low-temperature 
phenomenon and can only be measured if the mean free path of the electrons is comparable 
to the wavelength. 

Although ultrasonic attenuation is a recently explored phenomenon, its roots lie in 
the old problem of electron scattering by elastic waves. Many transport problems such 
as electrical and thermal conductivity can be readily explained by the interaction of elec- 
trons and phonons. Hence, even though the range of frequencies is completely different 
for ultrasonic and thermal waves, the waves a r e  otherwise identical in nature and have a 
common theoretical description. The major difference between ultrasonic attenuation and 
i ts  older counterpart is that, for the electron scattering by elastic waves, the mean free 
path of the conduction electrons is usually ignored. 

ducers. A piezoelectric crystal develops a net electrical polarization if it is placed under 
elastic s t ra in  along certain crystal directions. Thus, if an electric field is applied which 
var ies  with time, a strain field is set  up between the faces of the piezoelectric crystal 

The most direct method for generating elastic waves employs piezoelectric trans- 
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with the same time variation produced at the free surface of the crystal, and a wave prbp- 
agates into the interior. Longitudinal or  transverse waves may be produced, depending 
upon the crystal. The waves are introduced into the solid through a bond, and electrical 
energy is converted into ultrasonic energy. 

that the transverse wave produces no density changes that would lead to  space-charge 
induced electric fields. However, the ionic current may not compensate for the electric 
current. In this case, a magnetic field is generated, and from these fields anelectric 
field is developed. 

of a magnetic field was performed by Akhiezer (ref. 6). He predicted that at low temper- 
atures the conduction electrons would act as absorbers of ultrasonic waves. Many years 
later BBmmel (ref. 10) and Mackinnon (ref. 11) experimentally investigated attenuation 
of waves in superconductors, and discovered that, upon crossing the superconducting 
transition region, the electrons contributed significantly to attenuation. This result 
verifies Akhiez er ' s predictions. 

metal was developed by Pippard (ref. 1). The underlying assumption was that in the 
absence of collisions the ultrasonic wave adiabatically distort the Fermi surface. 
example, a spherical Fermi surface under a small distortion transforms to an ellipsoid. 
When the collisions between electrons and ions are taken into account, this transforma- 
tion is never completed, because the electron-phonon interaction attempts to res tore  the 
surface back to its original shape. Using this concept in conjunction with kinetic methods 
of following a single electron through the lattice, Pippard computed the coefficient of 
attenuation for normal metals. 

The Pippard methods also show that, for q l  << 1, the attenuation varies as the 
square of the frequency. 
to or  less than the electron mean free path, the attenuation varies with the first  power 
of the frequency. Fippard's free electron theory has successfully accounted for most 
experimental features of ultrasonic attenuation. 

Boltzmann equation for an electron distribution function. The major advantage of the 
Boltzmann equation approach (as opposed to the kinetic method) is that incorporation of 
the effect of an applied field appears to be a less formidable task. Steinberg (refs. 12 
and 13) and Blount (ref. 7) have used this method in calculating the coefficient of attenua- 
tion, and their results are in agreement with Pippard's for  arbitrary qf values in zero 
applied magnetic field. 

Using the free electron model, Pippard (ref. 1) calculated the attenuation for longi- 
tudinal and transverse waves with no restriction on the ql values. The attenuation for 

The difference between transverse and longitudinal waves propagating in a metal is 

The first theoretical investigation of ultrasonic attenuation in metals in the absence 

The first complete theory of ultrasonic attenuation for a free electron model of a 

For 

For qt 2 1, where the sound wavelength becomes comparable 

Most of the recent theories of ultrasonic attenuation in metals are based on use of the 
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th'e longitudinal wave in the absence of a magnetic field 

7 

is 

1 

where T is the relaxation time and n the number of particles per unit volume. The 
attenuation for transverse waves is 

The effect of a magnetic field on the attenuation of an ultrasonic wave by a metal, 
when the ultrasonic wave is considered a free electron gas, can now be investigated. 
When a magnetic field is applied, the electrons move in spiralling orbits. This reduces 
the effective electron mean free path and thus increases the number of collisions with the 
lattice. Therefore, it would be expected that as the magnetic field is increased the atten- 
uation decreases monotonically. However, this phenomenon depends primarily on the q t  
values. 

effective mean free path of the electrons is decreased. 
varies in an oscillatory manner for certain geometries. This phenomenon was first ex- 
plained by Pippard (ref. 14), and independently by Morse, Bohm, and Gavenda (ref. 15). 
The interpretations of Pippard and Morse, Bohm, and Gavenda, which appear to agree 
with experiment, relate the variation of the attenuation coefficient with the relative sizes 
of the wavelengths and the orbit diameter of the electron. Since the Fermi velocity of 
the electrons is several hundred times the velocity of the ultrasonic wave, the electrons 
can complete many orbits before interacting with the wave. Thus, the local electric field 
can be considered effectively stationary in space. Hence, a coherence between the elec- 
tron velocity and the ion velocity is possible. It should also be remembered that only the 
electrons at the Fermi surface can absorb energy from the sound wave and lose it by 
relaxation processes. 

When the orbit of the Fermi surface electron is equal to one-half of the wavelength 
of the sound wave, a resonance condition is obtained. By studying this and other reso- 
nance attenuations in several directions for a single crystal, a great deal of information 
on the shape of the Fermi surface can be obtained. 

For q4 << 1, the attenuation decreases for all values of magnetic field, since the 
For qt  >> 1, the attenuation 

Using the resonance and cyclotron relations gives 

5 



eB eH 

which yield 

I p = -  eHR 

I C 

The Boltzmann 
of a magnetic field. 

+ 
where ;= $/m, V 

equation is used to calculate the attenuation coefficient in the presence 
This equation is 

= v * Vrf + z Vvf + - af 
at 

is the velocity of the particle in momentum space, (af/at)-  repre- 
L 

sents collisions between electrons and phonons, and $ is the Lorentz force, 

-b 

where H includes both the applied field Ho and the magnetic field H1 associated with 
the sound wave. Chamber's trajectory method was used to solve this Boltzmann equation 
(ref. 16). 
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The solutions obtained by Cohen, Harrison, and Harrison for the relative attenuation 
contained the following restrictions: (1) The product of the ultrasonic wave number and 
the gyromagnetic radius of the electron denoted by X = qR was of order unity, (2) the 
condition l(oc~)/(l + iw7)I >> 1 was satisfied, and (3) terms of order l/(ql)2 were 
neglected. A summation over Bessel functions of order n enters into the calculation for 
the effective conductivity (as shown in the section CALCULATIONS in this report). With 
the imposed restrictions, only the zero order (n = 0) is important. Because of these re- 
strictions, the theory of Cohen, Harrison, and Harrison is valid only for large q l  (-50). 
No shifts in the extrema of the relative attenuation were predicted, and no single analytic 
expression which can approach both the zero field case and the infinite field case w a s  ob- 
tained. Since many experiments do not satisfy the imposed restrictions, the conductivity 
tensor was reformulated in the present study to include all orders of n and ql .  The 
only restriction is that UT << 1. 

2 

CALCULATIONS 

The relative attenuation coefficient is determined from the nonvanishing components 
of the conductivity tensor o... Using the equations developed by Cohen, Harrison, and 
Harrison gives the attenuation coefficient with an applied magnetic field: 

11 

Sll = Re[ oi2+i: ] - 1 

ai1082 + + iPoi1 

s22 = ' -  1 (9) 

where Sll  represents the relative attenuation coefficient for a longitudinal wave moving 
perpendicular to an applied magnetic field, S22 corresponds to a transverse wave moving 
perpendicular to the applied field, and S33 corresponds to a transverse wave moving 
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parallel to the field. The attenuation coefficient is obtained by multiplying S.. by ' 
9 

1J 1.l 

nm/PVST. 
The effective conductivity o ! .  is derived from the conductivity tensor 0.. by means 

of a reciprocal tensor R.., where 
9 

and 

The conductivity tensor is given by (ref. 3) 
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gn(x) =-  Jx JZn(2t)dt 
X 

s n = 3rn - [ - $)gno 

(19) 

where X = q V d w c .  The term X can be written as the product of the ultrasonic wave- 
length and the gyromagnetic radius of an electron moving perpendicular to a magnetic 
field. The radius can be represented as 

vF - -- vF R =  
eH/mc w c  

Therefore, 

X = qR (22) 

Equations (8) to (22) were derived by Cohen, Harrison, and Harrison. Solving these 
equations in this form proves to be a formidable task because the ser ies  involves inte- 
gral Bessel functions. Thus, it was necessary in reference 3 to limit the equations to the 
case n = 0, which eliminates the sums. It was also feasible to neglect products involving 

2 l/(qQ) te rms  where this product was much greater than 1. No analytic expressions 
were obtained which suitably described the limiting cases of H - 0 and H - 00. 

In the present analysis the difficulties are removed. The only assumption used is 
that te rms  involving UT as well as terms containing the square of the ratio of the clas- 
sical skin depth to the phonon wavelength a r e  negligible. Most metals fulfill this require- 
ment. 

To extend the theory of reference 3, all the terms must be taken into account. Thus, 
the relative attenuation coefficient must contain the complete ser ies  involving integral 
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Bessel functions. By using equation (11) in conjunction with equation (13), the effective' 
conductivity tensor can be w.ritten as 

(1 - iw-r)gn 
1 -  

gL - (1 - iw7)  

1 + i(nwc - W)T 

2 

1 + i(nwc - W)T 

n=- 03 + 'n 
u i 2  = 1 - 3 E  io7 1 + i(nwc - W)T 

(1 - ioT)gn 

1 + i(nwc - W ) T  
1 - i W T  - 

n=- 00 

n=- 03 

/ , 1 + i(nwc - O)T 

n=- 03 ob3 = 3 
1 - iwT 
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. 
The relative attenuation S.. for ultrasonic waves propagating in an ideal metal under 

the influence of an applied magnetic field is derived in appendix B. Even though all the 
terms a r e  included in a compact form, the problem of summing over integrals which con- 
tain Bessel functions remains. To remove this complexity, a direct approach to the prob- 
lem of summing infinite ser ies  in closed form is used. This method is outlined in detail 
in appendix B. 

11 

Combining the results of appendixes B and C gives the relative attenuation coefficient 

s33 = (L - I) 
3v 

where (see appendixes B and C) 

I- 1PX2n 1 q 4  q2P 

2n- 1 (- 1)"2nX 

n= 1 
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n=co 

\ \ 

L n= 1 

(- 1)"2nX2" 

(2n + 1) (2n + 3) 

(- 1)"x2" 

These relatively simple expressions (eqs. (27) to (33)) permit evaluation of relative 
attenuation for a number of interesting cases. 

RESULTS AND DISCUSSION 

Three cases are analyzed in detail. For each case the relative attenuation coeffi- 
cient, SI1, S22, or  S33, in the presence of a transverse magnetic field is discussed. 
For the phenomenon of magnetoacoustic oscillations, graphs as well as tables a r e  pre- 
sented. Whenever it is possible, comparisons between experiment and theory are made. 

High Field Limit 

When the magnetic field is extremely large, the attenuation coefficient tends to a 
limit which is different for each of the three attenuation coefficients. This limit is com- 
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pbted from equations (30) to (33) by allowing X to go to zero as H approaches infinity. 
As X goes to zero, it is necessary to consider only the first term of each series, since 
higher order te rms  vanish more rapidly. Thus, the following expressions a r e  obtained 
for H - 00, X - 0: 

u = - x  2 
3 

2x2 x2 - 
UT=--+- 

l5 3q2Q2 

3 15 

(34) 

(3 5) 

Inserting equations (34) to (37) into equations (27) to (29) gives the following values for 
the relative attenuation coefficient: 

(37) 

q21 
s 1 1 = 3  

x2/9 

(2X2/15) + (X2/3q2Q2) 

\15 

s33 = 
1 - 1 = 0  

15 

The fact that Sll is saturated in a high magnetic field can readily be explained by 
the fact that the electron gyroradius becomes smaller and smaller and thus the mean free 
path tends to approach the zero field value. For the case of shear waves, the attenuation 

13 



coefficient tends to zero as H-2. The predictions from the free electron model in this. 
respect a re  thus verified. 

Low Field Limit 

In the low field limit the attenuation coefficient is expected to approach Pippard's re-  
sult for zero magnetic field. Thus, i f  X approaches infinity while H goes to zero, 

n= 1 

u = o  

r 1 

Substituting equations (41) to (44) into equations (31) to (33) yields 

tan-lqQ - 
qQ - tan-lqQ 

f- 

(42) 

(43) 

(4 5) 

- 1 = s22 
-l 1 (47) 
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case of ultrasonic wave propagation in a metal in the absence of a magnetic field. 
These results are in exact agreement with the results of Pippard's theory for the 

Magnetoacoustic Oscil lations 

When the field is of such magnitude that the electron orbit dimensions are comparable 
with the wavelength, the attenuation is oscillatory with magnetic field. The effect of at- 
tenuation on the electron mean free path for longitudinal and transverse waves is shown 
in figures l(a) and (b) and 2(a). These plots show the relative attenuation as a function of 
the product of the phonon 7.r73ve Dumber and the gyromagnetic radius of an electron R 
which is inversely proportional to the field. 

An important phenomenon occurs for the case of a longitudinal wave moving perpen- 
dicular to the magnetic field. As the magnetic field is varied, the minimum attenuation 
coefficient for different qQ values exhibits a shift. Such shifts are evident in figures l(a) 
and (b) and 2(a). The magnitude of these shifts is shown more clearly in table I. The 
shift in the first minimum is much less pronounced for higher qQ values. The maximum 
positions a r e  not affected by varying qQ. The smaller values of qQ (9 to 18) given in 
table I are in the range accessible to existing experiments. The values for qQ = 50 are 
in agreement with reference 3 for large qQ. 

Harrison or Kjeldaas and Holstein. Recent experimental investigations by Trivisonno 
and Said on potassium have verified that these shifts do exist. Calculations from equa- 
tions (27), (30), (3l), and (32) for various qQ values are in good agreement with the 
magnitudes of the shifts in the minimum reported by Trivisonno and Said (ref. 9). For 
example, at qQ = 13, the measured experimental shift (defined relative to first minimum 
at qQ = 50) is 0.21 (ref. 9). This experimental value compares favorably with the cal- 
culated relative shift of 0.23. The shifts of the calculated relative attenuation for the 
range of qQ between 9 and 18 also compare favorably with the experimental results of 
reference 9. 

anomalous shift in the maximum positions (figs. 2(a) and (b)). Here, however, the shifts 
are extremely small  compared to  the shifts in the minimum positions of Sll. The mini- 
mum points of S22 show no appreciable change. In table 11, the points of maximum and 
minimum positions are given. 

Figures 3(a) and (b) give results for the case in which the transverse wave in a mag- 
netic field is polarized parallel to the field. In this case, much smaller oscillations 
occur, as may be determined from the equations for the effective conductivity tensor 

These shifts have not been mentioned explicitly by either Cohen, Harrison, and 

Results for the case of a transverse wave moving perpendicular to the field show an 
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8 Product phonon wave numbei 
4 and electron mean free path, 

s (a) Product of phonon wave number and electron mean free path, 20, 15, and 11. 

0 2 4 6 8 10 12 14 16 
Product of phonon wave number and gyromagnetic radius, x - qR 

Ib) Product of phonon wave number and electron mean free path, 18, 9, and 7. 

Figure 1. - Relative attenuation of longitudinal wave In transverse magnetic field as 
function of gyroradius for several electron mean paths. 
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TABLE I. - EXTREMA FOR RELATIVE ATTENUATION COEFFICIENT Sll 

vlaximum product 
of phonon wave 

lumber and gyro- 
magnetic radius, 
x,, = (qR),, 

ninimum product 
of phonon wave 

lumber and gyro- 
magnetic radius, 

Xmin = (qR),in 

Product of 
phonon wave 
number and 

?lectron mean 
free path, 

SI 

50 

25 

18 

15 

Relative 
tttenuatio 

166.6 
144.4 
71.15 

Relative 
ittenuation 

111.8 
60.19 
43.49 

0 
4.04 
7.24 

2.92 
6.01 
9.12 

0 
4.04 
7.24 
10.45 

41.7 
38.39 
21.27 
16.35 

2.85 
5. 95 
9.05 
12.15 

28.62 
17.01 
13.95 
12.92 

0 
4.03 
7.24 
10.45 

21.6 
20.4 
12.21 
10.12 

2.80 
5. 90 
9.00 
12.15 

15.23 
9.99 
8. 96 
8.78 

0 
4.02 
7.24 
10.45 

15 
14. 54 
9. 17 
7.94 

2.74 
5. 83 
8.97 
12.10 

2.71 
5. 82 
8.95 
12.10 

10.81 
7.63 
7.20 
7.20 

8.29 
6.27 
6. 12 
6. 18 

6.12 
5.05 
7.20 
7.20 

13 11.27 
11.18 
7.41 
6.62 

0 
4.01 
7.24 
10.45 

0 
4.00 
7.24 
10.45 

8.07 
8.30 
5. 85 
7.94 

2.59 
5.78 
8. 93 
12.1 

11 

9 0 
4.0 
7.25 
10.50 

5.40 
5. 87 
4.47 
4.27 

2.45 
5.75 
8. 90 
12.05 

4.27 
3.97 
4.11 
4. 18 
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a 
M 

v) 

c w 
c 

'3 .- 4 - B 
c 0 .- 
5 0  
E (a) Product of phonon wave number and electron mean free path, 20, 15, and 11. 

a 

4 

0 2 4 6 8 10 12 14 16 
Product of phonon wave number and gyromagnetic radius, x - qR 

(b) Product of phonon wave number and electron mean free path, 18, 9, and 7. 

Figure 2. - Relative attenuation of transverse wave in transverse magnetic field as function 
of gyroradius for several electron mean free paths. 

TABLE 11. - EXTREMA FOR RELATIVE ATTENUATION COEFFICIENT S22 

Product of 
phonon wave 
number and 
lectron mean 
free path, 

qf 

25 

18 

15 

13 

11 

_ _  
9 

laximum product 
of phonon wave 
lumber and gyro- 
magnetic radius, 
gmax = 

4.20 
7.40 
10.55 

4.20 
7.40 
10.55 

4.20 
7.40 
10.55 

4.15 
7.35 
10.55 

4. 15 
7.35 
10.55 

4. 15 
7.35 
10.55 

Relative 
.ttenuation 

8.80 
10.20 
10.66 

7. 56 
7.86 
7.72 

6.70 
6. 56 
6.30 

5. 98 
5.61 
5. 34 

5. 11 
4.61 
4.37 

4.11 
3.60 
3.44 

~~ 

dinimum product 
of phonon wave 

lumber and gyro- 
nagnetic radius,  
K m i n  = (qWmin 

0 
5.6 
8. 85 

0 
5.6 
8. 85 

0 
5. 60 
8.85 

0 
5.6 
8. 85 

0 
5.6 
8. 85 

0 
5.60 
8.85 

Relative 
rttenuation 

0 
3.73 
6. 17 

0 
3. 50 
5.34 

0 
3.32 
4.79 

0 
3. 15 
4.33 

0 
2.91 
3.79 

0 
2.59 
3.17 

. 
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. 

Product of phonon wave number and gyromagnetic radius, x = qR 

(b) Product of phonon wave number and electron mean free path, 18, 9, and 7. 

Figure 3. - Relative attenuation of transverse wave in magnetic field parallel to polariza- 
tion direction as function of gyroradius for several electron mean free paths. 
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component ab3 (eqs. (38) and (42)). The terms involved in this tensor exhibit slight 
oscillatory behavior. 

and Mielczarik (ref. 17). No shifts were reported, but the dependence of attenuation on 
magnetic field w a s  in accord with the free electron theory. 

' 

Experimental investigations on potassium have also been reported by Foster, Meijer, 

CONCLUDING REMARKS 

This report has reevaluated the theory of reference 3 for ultrasonic attenuation to 
include all values of qt .  This formulation shows that shifts in the extrema exist and 
gives the correct values for the limiting case of H -. 0 and H - 00. 

The equations developed in this report, although discussed only for UT << 1, can 
6 also be used for high frequencies (>lo Hz) by relaxing this condition, as shown in 

appendix B (eq. (B4)). 

istence of shifts, and the magnitude of these shifts agrees with the results of the present 
report. 

The experiments performed by Trivisonno, Said, and Power (ref. 9) reveal the ex- 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, August 30, 1966, 
129-02-05-09-22. 
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APPENDIX A 

SYMBOLS 

a defined in appendixes B 
and C 

-c 

F/m 

magnetic induction 

defined in appendixes B 
and C 

phonon wave number 

radius d electron orbit 

reciprocal tensor 

relative attenuation coef- 
ficient 

q 

R 
-c a 

B 

b 

R.. 
1J 

S.. 
1J 

sll relative attenuation coef- 
ficient for longitudinal 
wave moving perpen- 
dicular to magnetic field 

relative attenuation coef- 
ficient for transverse 
wave moving perpen- 
dicular to magnetic field 

relative attenuation coef- 
ficient for transverse 
wave whose direction of 
polarization is parallel 
to magnetic field 

dummy variable 

ionic velocity 

defined in appendixes B 
and C 

speed of light 

defined in appendixes B 
and C 

energy (electron) 

energy in unapplied bed 

C 

- 
C 

s22 E 

A E  - 
F force per particle 

f distribution function 
s33 

d defined in appendix B 

electron charge 

defined in appendix B 

integrals of Bessel func- 
tions 

e 
- e 

t 

U 

U 
H 

i 

magnetic field intensity 

complex number 

Bessel function 

P 
V defined in appendixes B 

and C 

velocity of particle in 
momentum space 

Fermi velocity 

velocity of sound 

defined in appendixes B 
and C 

electron mean free path 

mass of particle 

ionic density 

number of particles per 
unit volume 

-b 

V m 

N 
vf 

vS 

n 

- 
W P 

Q 
momentum of electron 

power per unit volume 

2 1  



X 

Y 

CY 

OT 
P 

x 
E 

product of phonon wave number q 
and classical gyromagnetic 
orbit radius R 

defined in appendix B 

attenuation coefficient 

attenuation in magnetic field 

transverse attenuation 

ratio of classical to phonon wave- 
length 

wavelength of sound 

electrical field 

P density 

0.- 4 conductivity tensor 

a!. effective conductivity tensor 

a. direct- current conductivity 

7 relaxation time 

w frequency of ultrasonic wave 

w cyclotron frequency 

4 

C 

plasma frequency 

defined in appendixes B and C 
P 

w 

w O  
Subscript: 

K momentum in K space 
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APPENDIX B 

DERIVATION OF ATTENUATION COEFFICIENT 

The o; , component of the effective conductivity tensor o!. can be written as 
1J I I  

(1 - i w ) g n  
1- 

(1 - iwT)gn 

1 + i(nwc - W ) T  
1 -  io7 -) ', 

Let 

an = (nu - W ) T  
C 

Now 

Let 

Then 

2 2  3 w ~ ( 1 +  w T )b o:, = 
I1 

q2I2(,~ + ib) (1 + i w )  

The o iz  component of the effective conductivity tensor can be written from equations (11) 
and (16) as 

23 



Let 

/ 1 + ian 

g x 
2 - u  _ -  

(1 - a UT) - n 

2 2 1 + a, 

Then 

2 2 - 2  2 9 0  7 (U) (u' ) = 
2 12 

q2!l2(u7 + ib) 

Let 

- c = (UT + ib) 

Then 

24 
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The ai2 component of the effective conductivity 

3 
1 - iwT 

ai2 = 

Let 

s,(l - iw7) 

tensor from equations 

n=oo 

(11) and (14) is 

(1 - iw)g,  
1 + ian 

n=- 00 

1 - io7 - 
c 

Hence, 

2 w + u i  

b - c 
- 

3(1 + i w 7 )  c 

1 + w 2 ~ 2  
(a' ) = 22 

From equation (17), 

Let 
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2 d = + o ~ ( t  + o b )  

- 2- e = b G 2 + b  w 

Then 

+eW[b +  UT)^] - dG[b - (UT)] 

d2 + Z2 
s11 = 

Making the approximation 

yields 

sll=T(:-l) q2Q2 - - 1  

In the same manner, S22 and S33 can be obtained. 
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APPENDIX C 

REFORMULATION AND SIMPLIFICATION OF INTEGRAL BESSEL FUNCTION 

The difficulty in the summation containing the integral Bessel function gn can be , 
removed by writing 

n=m 

gn 
1 + i(nwc - O)T w o  w o + n  2 2 2 2  w T 

C c n=-m n=l 

where 

wo = 1 - iw7 

The summation in equation (Cl) can be written 

n=l n=l 

2 gn - 2a - -- 

n=l  

where 

Now, from equation (17), 
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where 

Hence, the sum in equation (C2) becomes 

(-iln COS 2m  COS(^^ COS e)de dt -- 
2 2  n - a  

n=l 

But from reference 18, 

n=l 

Hence, 

(C 3) cos(2Ba)cos(2t cos 8)dt de 
sin (an) 

Thus, 
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. 
How ever, 

dt (-l)n(t)2n 
I + ) ;  ( 1 2 - a ) ( 2  2 2 - a ) .  2 . . ( n 2 - a )  2 

1 cos(2t cos e)cos(2ea)de = - sin(an) 
2 2 2 2  2a w o + n  w T 

C 

go 1 

wo *o 
= - -  +-  

n=l 

Hence, 

--+- 

~ *o golJ  
[+E 

n=l I (- 1) "(t) 2n 
(12 - a2)(22 - a2) . . . (n 2 - a2) 

1 - I 

J n=l 

+; ), 
n=l 

(- 1) nm)2n . I . ,  

Therefore, the original summation of equation (Cl) becomes 

- 1 - - .  gn c 1 + i(nwc - W)T oo 

n=-oo 

. +  

d 
n=l  

w0 = 1 - iwr M 1 
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The significant term in equation (C6) is the summation, which will be denoted b. ' 

The summations contain g', which can be evaluated by noting that 

Hence, from equation (C6), 

The same method that was used for equation (Cl) gives the expression for the sum- 
mations containing uu in equation (15): 

(2n + 3)(2n + 1) 

r n 
1 + i(nwc - W ) T  3 

n=-m 
n=l 

Hence, 
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(-l)nX2" - 
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